Skip to main content
Log in

Crystal Structure of a Novel Type Isomerase of Enoyl-CoA Hydratase/Isomerase Family Protein from Cupriavidus necator H16

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Although enoyl-CoA hydratase/isomerase superfamily proteins are functionally diverse and extremely abundant in microbial and higher organism’s genome, they still have been elusively annotated. The genome of Cupriavidus necator H16 contains at least 54 enoyl-CoA hydratase/isomerase superfamily proteins that might influence on polyhydroxyalkanoate synthesis, but most of them are uncharacterized. Among them, we first determined crystal structure of H16_B0756 at a 2.0 Å resolution. The protein exhibits unique amino acid sequences compared to the other isoforms with identity lower than 36%. The structure of H16_B0756 forms a trimeric architecture and showed canonical disk-shape. Interestingly, H16_B0756 has only one glutamate residue at the active site while other enoyl-CoA hydratases have two nucleophilic glutamate at the catalytic site. We found that the active site conformation of H16_B0756 is quite similar to that of 1,2-epoxyphenylacetyl-CoA isomerase (PaaG) rather than those of other enoyl-CoA hydratases. In addition to the structural comparison, gene neighborhoods analysis suggested that H16_B0756 might function in the ring compound degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mullernewen, G., U. Janssen, and W. Stoffel (1995) Enoyl-Coa Hydratase and Isomerase Form a Superfamily with a Common Active-Site Glutamate Residue. Eur. J. Biochem. 228: 68–73.

    Article  CAS  PubMed  Google Scholar 

  2. Xiang, H., L. S. Luo, K. L. Taylor, and D. Dunaway-Mariano (1999) Interchange of catalytic activity within the 2-enoylcoenzyme a hydratase isomerase superfamily based on a common active site template. Biochemistry-Us. 38: 7638–7652.

    Article  CAS  Google Scholar 

  3. Chae, J. C., Y. Kim, Y. C. Kim, G. J. Zylstra, and C. K. Kim (2000) Genetic structure and functional implication of the fcb gene cluster for hydrolytic dechlorination of 4-chlorobenzoate from Pseudomonas sp DJ-12. Gene. 258: 109–116.

    Article  CAS  PubMed  Google Scholar 

  4. Holden, H. M., M. M. Benning, T. Haller, and J. A. Gerlt (2001) The crotonase superfamily: Divergently related enzymes that catalyze different reactions involving acyl coenzyme A thioesters. Accounts Chem. Res. 34: 145–157.

    Article  CAS  Google Scholar 

  5. Mursula, A. M., D. M. F. van Aalten, J. K. Hiltunen, and R. K. Wierenga (2001) The crystal structure of Delta(3)-Delta(2)-enoyl-CoA isomerase. J. Mol. Biol. 309: 845–853.

    Article  CAS  PubMed  Google Scholar 

  6. Bahnson, B. J., V. E. Anderson, and G. A. Petsko (2002) Structural mechanism of enoyl-CoA hydratase: Three atoms from a single water are added in either an E1cb stepwise or concerted fashion. Biochemistry-Us. 41: 2621–2629.

    Article  CAS  Google Scholar 

  7. Agnihotri, G., and H. W. Liu (2003) Enoyl-CoA hydratase: Reaction, mechanism, and inhibition. Bioorgan. Med. Chem. 11: 9–20.

    Article  CAS  Google Scholar 

  8. Partanen, S. T., D. K. Novikov, A. N. Popov, A. M. Mursula, J. K. Hiltunen, and R. K. Wierenga (2004) The 1.3 angstrom crystal structure of human mitochondrial Delta(3)-Delta(2)-enoyl-CoA isomerase shows a novel mode of binding for the fatty acyl group. J. Mol. Biol. 342: 1197–1208.

    Article  CAS  PubMed  Google Scholar 

  9. Mursula, A. M., J. K. Hiltunen, and R. K. Wierenga (2004) Structural studies on Delta(3)-Delta(2)-enoyl-CoA isomerase: the variable mode of assembly of the trimeric disks of the crotonase superfamily. Febs. Lett. 557: 81–87.

    Article  CAS  PubMed  Google Scholar 

  10. Hamed, R. B., E. T. Batchelar, I. J. Clifton, and C. J. Schofield (2008) Mechanisms and structures of crotonase superfamily enzymes-How nature controls enolate and oxyanion reactivity. Cell Mol. Life Sci. 65: 2507–2527.

    Article  CAS  PubMed  Google Scholar 

  11. Geisbrecht, B. V., D. Zhu, K. Schulz, K. Nau, J. C. Morrell, M. Geraghty, H. Schulz, R. Erdmann, and S. J. Gould (1998) Molecular characterization of Saccharomyces cerevisiae Delta(3), Delta(2)-enoyl-CoA isomerase. J. Biol. Chem. 273: 33184–33191.

    Article  CAS  PubMed  Google Scholar 

  12. Geisbrecht, B. V., D. Y. Zhang, H. Schulz, and S. J. Gould (1999) Characterization of PECI, a novel monofunctional Delta(3), Delta(2)-enoyl-CoA isomerase of mammalian peroxisomes. J. Biol. Chem. 274: 21797–21803.

    Article  CAS  PubMed  Google Scholar 

  13. Choi, J. H., M. J. Seo, K. T. Lee, and D. K. Oh (2017) Biotransformation of Fatty Acid-rich Tree Oil Hydrolysates to Hydroxy Fatty Acid-rich Hydrolysates by Hydroxylases and their Feasibility as Biosurfactants. Biotechnol. Bioproc. E. 22: 709–716.

    Article  CAS  Google Scholar 

  14. Gescher, J., W. Eisenreich, J. Worth, A. Bacher, and G. Fuchs (2005) Aerobic benzoyl-CoA catabolic pathway in Azoarcus evansii: studies on the non-oxygenolytic ring cleavage enzyme. Mol. Microbiol. 56: 1586–1600.

    Article  CAS  PubMed  Google Scholar 

  15. Gerratana, B., S. O. Arnett, A. Stapon, and C. A. Townsend (2004) Carboxymethylproline synthase from Pectobacterium carotorova: A multifaceted member of the Crotonase superfamily. Biochemistry-Us. 43: 15936–15945.

    Article  CAS  Google Scholar 

  16. Haller, T., T. Buckel, J. Retey, and J. A. Gerlt (2000) Discovering new enzymes and metabolic pathways: Conversion of succinate to propionate by Escherichia coli. Biochemistry-Us. 39: 4622–4629.

    Article  CAS  Google Scholar 

  17. Wong, B. J., and J. A. Gerlt (2004) Divergent function in the Crotonase superfamily: An anhydride intermediate in the reactions catalyzed by 3-hydroisobutyryl-CoA hydrolase (vol 125, pg 12076, 2003). J. Am. Chem. Soc. 126: 1921–1921.

    Article  Google Scholar 

  18. Do, K. H., H. M. Park, S. K. Kim, and H. S. Yun (2018) Production of cis-Vaccenic Acid-oriented Unsaturated Fatty Acid in Escherichia coli. Biotechnol. Bioproc. E. 23: 100–107.

    Article  CAS  Google Scholar 

  19. Truglio, J. J., K. Theis, Y. G. Feng, R. Gajda, C. Machutta, P. J. Tonge, and C. Kisker (2003) Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K-2 biosynthesis. J. Biol. Chem. 278: 42352–42360.

    Article  CAS  PubMed  Google Scholar 

  20. Wong, B. J. and J. A. Gerlt (2004) Evolution of function in the crotonase superfamily: (3S)-methylglutaconyl-CoA hydratase from Pseudomonas putida. Biochemistry-Us. 43: 4646–4654.

    Article  CAS  Google Scholar 

  21. Engemann, C., T. Elssner, S. Pfeifer, C. Krumbholz, T. Maier, and H. P. Kleber (2005) Identification and functional characterisation of genes and corresponding enzymes involved in carnitine metabolism of Proteus sp. Arch. Microbiol. 183: 176–189.

    Article  CAS  PubMed  Google Scholar 

  22. Patton, S. M., T. A. Cropp, and K. A. Reynolds (2000) A novel Delta(3),Delta(2)-enoyl-CoA isomerase involved in the biosynthesis of the cyclohexanecarboxylic acid-derived moiety of the polyketide ansatrienin A. Biochemistry-Us. 39: 7595–7604.

    Article  CAS  Google Scholar 

  23. Gay, D. C., P. J. Spear, and A. T. Keatinge-Clay (2014) A Double-Hotdog with a New Trick: Structure and Mechanism of the trans-Acyltransferase Polyketide Synthase Enoyl-isomerase. Acs. Chem. Biol. 9: 2374–2381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, D. and K. J. Kim (2018) Structural Insight into Substrate Specificity of 3-Hydroxypropionyl-Coenzyme A Dehydratase from Metallosphaera sedula. Sci. Rep-Uk. 8.

    Book  Google Scholar 

  25. Schwartz, E., B. Voigt, D. Zuhlke, A. Pohlmann, O. Lenz, D. Albrecht, A. Schwarze, Y. Kohlmann, C. Krause, M. Hecker, and B. Friedrich (2009) A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics. 9: 5132–5142.

    Article  CAS  PubMed  Google Scholar 

  26. Chakraborty, P., K. Muthukumarappan, and W. R. Gibbons (2012) PHA Productivity and Yield of Ralstonia eutropha When Intermittently or Continuously Fed a Mixture of Short Chain Fatty Acids. J. Biomed. Biotechnol.

    Google Scholar 

  27. Eggers, J. and A. Steinbuchel (2013) Poly(3-Hydroxybutyrate) Degradation in Ralstonia eutropha H16 Is Mediated Stereoselectively to (S)-3-Hydroxybutyryl Coenzyme A (CoA) via Crotonyl-CoA. J Bacteriol. 195: 3213–3223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pohlmann, A., W. F. Fricke, F. Reinecke, B. Kusian, H. Liesegang, R. Cramm, T. Eitinger, C. Ewering, M. Potter, E. Schwartz, A. Strittmatter, I. Voss, G. Gottschalk, A. Steinbuchel, B. Friedrich, and B. Bowien (2006) Genome sequence of the bioplasticproducing “Knallgas” bacterium Ralstonia eutropha H16. Nat. Biotechnol. 24: 1257–1262.

    Article  PubMed  Google Scholar 

  29. Peplinski, K., A. Ehrenreich, C. Doring, M. Bomeke, and A. Steinbuchel (2010) Investigations on the microbial catabolism of the organic sulfur compounds TDP and DTDP in Ralstonia eutropha H16 employing DNA microarrays. Appl. Microbiol. Biot. 88: 1145–1159.

    Article  CAS  Google Scholar 

  30. Volodina, E. and A. Steinbuchel (2014) (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase (FadB') from fatty acid degradation operon of Ralstonia eutropha H16. Amb. Express. 4.

    Google Scholar 

  31. Seo, H. and K. Kim (2018) Purification, crystallization and X-ray crystallographic analysis of enoyl-CoA hydratase/isomerasefamily protein from Cupriavidus necator H16. Biodesign. 6: 46–49.

    Google Scholar 

  32. Park, S.-Y., S.-C. Ha, and Y.-G. Kim (2017) The protein crystallography beamlines at the pohang light source II. Biodesign. 5: 30–34.

    Google Scholar 

  33. Saitou, N. and M. Nei (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  PubMed  Google Scholar 

  34. Felsenstein, J. (1985) Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. 39: 783–791.

    Article  PubMed  Google Scholar 

  35. Zuckerkandl, E. and L. Pauling (1965) Evolutionary divergence and convergence in proteins. pp. 97–166. Evolving genes and proteins. Elsevier, City.

    Google Scholar 

  36. Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35: 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holm, L. and L. M. Laakso (2016) Dali server update. Nucleic. Acids Res. 44: W351–W355.

    Google Scholar 

  38. Teufel, R., V. Mascaraque, W. Ismail, M. Voss, J. Perera, W. Eisenreich, W. Haehnel, and G. Fuchs (2010) Bacterial phenylalanine and phenylacetate catabolic pathway revealed. P Natl. Acad. Sci. USA. 107: 14390–14395.

    Article  CAS  Google Scholar 

  39. Harwood, C. S. and R. E. Parales (1996) The beta-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50: 553–590.

    Article  CAS  PubMed  Google Scholar 

  40. Brigham, C. J., D. R. Speth, C. Rha, and A. J. Sinskey (2012) Whole-Genome Microarray and Gene Deletion Studies Reveal Regulation of the Polyhydroxyalkanoate Production Cycle by the Stringent Response in Ralstonia eutropha H16. Appl. Environ. Microb. 78: 8033–8044.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, H., Kim, KJ. Crystal Structure of a Novel Type Isomerase of Enoyl-CoA Hydratase/Isomerase Family Protein from Cupriavidus necator H16. Biotechnol Bioproc E 24, 155–162 (2019). https://doi.org/10.1007/s12257-018-0393-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0393-3

Keywords

Navigation