Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor

Hyeok Kim¹,†, Dong-Seok Song²,†, Jin-Hyuk Kwon², Ji-Hoon Jung², Do-Kyung Kim², SeongMin Kim³, In Man Kang², Jonghoo Park⁴, Heung-Sik Tae², Nicolas Battaglini⁵, Philippe Lang⁵, Gilles Horowitz⁶, and Jin-Hyuk Bae²,*

¹Construction Equipment Technology Center, Korea Institute of Industrial Technology (KITECH), Hayang-ro 13-13, Gyeongsan 38430, Korea
²School of Electronics Engineering, Kyungpook National University, Daegu 702-701, Korea
³Computational Science Group, Samsung Advanced Institute of Technology (SAIT), Yongin, Gyeonggi-do 446-712, Korea
⁴Department of Electrical Engineering, Kyungpook National University, Daegu 702-701, Korea
⁵ITODYS, CNRS UMR 7086, Université Paris Diderot (Paris7), 15 rue Jean-Antoine de Baïf, 75205 Paris Cedex 13, France
⁶LPICM, Ecole Polytechnique, CNRS, 91128 Palaiseau, France

Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.

Keywords: Nonlinear Transport, Poole-Frenkel Conduction, Organic Thin Film Transistors (OTFTs), 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene.

1. INTRODUCTION

Organic thin-film transistors (OTFTs) have attracted a lot of attention for several advantages such as the mechanical flexibility, the low-temperature processing capability with low cost, and the applicability to plastic substrates over conventional silicon-based electronic elements since last several decades ago. In contrast to many of the OTFTs that experience generally from poor electrical properties, for instance, low current on–off ratio and low charge carrier mobility, pentacene-based TFTs fabricated by vacuum-deposition have shown the prominent carrier mobility comparable to the level of amorphous silicon.

In particular, solution-processed small molecules have huge potential in microelectronics applications by providing low cost processing and high charge carrier mobility. 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene has been widely used as an channel semiconductor boosting high performance thin film transistors with solution process. Recently, TFT with TIPS pentacene appeared extremely high mobility due to its a number of novel processing technology. Shearing method using sliding plate induced directed crystal growth and it led high performance TFT with the mobility up to 4.6 cm²/Vs through well-aligned crystals domains. Advanced process based on the shearing method controlling fluid of semiconductor solution with micropillar-patterned blade at the bottom of sliding plate facilitated a high degree of morphological control of thin films and exhibited an unprecedented maximum mobility up to 11 cm²/Vs. However, via a simple spin-coating, the optimization of the type of solvents gave the mobility of 2.82 cm²/Vs in a conventional process. In general, The mobility ranging from 0.01 cm²/Vs to 0.1 cm²/Vs were achieved without any surface modifications of dielectric as reported in this article. Here, we firstly report that nonlinear transport is observed in OTFTs with solution processed small molecule although polymer semiconductor is known for its nonlinear behavior of...
mobility according to lateral field.19, 20 This phenomenon is comprehensively demonstrated in terms of Poole-Frenkel transport.

2. EXPERIMENTAL DETAILS

A bottom gate, top contact pentacene TFT used in our study was shown in Figure 1. An indium–tin-oxide (ITO) layer on a glass substrate was used as a gate electrode. The ITO patterned substrate was cleaned with acetone, isopropyl alcohol, methyl alcohol, and de-ionized water sequentially. A gate insulator of poly(4-vinylphenol) (PVP)21 mixed with a thermal cross-linking agent of methylated poly(melamine-co-formaldehyde) (MMF) in 125 wt% was prepared as described previously.22 The PVP with MMF was dissolved in propylene glycol methyl ether acetate (PGMEA) in 10 wt% and then spin-coated on the ITO patterned substrate. The spin-coated PVP layer was baked at 100 °C for 1 min to remove any residual PGMEA, and subsequently baked for 5 min at 200 °C to promote thermal cross-linking in the PVP layer.23

The thickness and the capacitance per unit area of the cross-linked PVP layer were about 550 nm and 6.52 nF/cm2, respectively. An active layer was produced from a solution of the TIPS pentacene in 1.0 wt% in 1,2-dichlorobenzene on the PVP insulator by drop-casting and cured at 60 °C for 1 min on a hotplate at ambient condition to evaporate the solvent. The thickness of deposited TIPS pentacene was 200 nm.24

Note that the PVP gate insulator is chemically inert against the solvent of the TIPS pentacene, 1,2-dichlorobenzene. The source and drain electrodes of Au were deposited on the TIPS pentacene film through a shadow mask at the deposition rate of 1 Å/s. The thickness of Au was 80 nm. The channel length (L) in our TIPS pentacene TFTs was varied as 50, 80, 120 μm while the channel width (W) was fixed to be 2 mm. The electrical performance of the TIPS pentacene TFTs was measured using a semiconductor parameter analyzer (HP4155A) at room temperature (RT) under ambient pressure.

3. RESULTS AND DISCUSSION

Output characteristics are inhibited in Figure 2. Devices with different channel lengths essentially define that the devices are under various lateral field at the same drain voltage. Higher drain current is taken when channel length is narrower and gate voltage is higher. This is simply shown in the following equation.

\[
I_{\text{Dsat}} = \frac{1}{2} \mu_{\text{sat}} (W/L) C_i (V_{\text{GS}} - V_T)^2
\]

From the equation above, the effective saturation mobility \(\mu_{\text{sat}} \) is extracted by plotting and extracting the slope of the square root of the drain current as a function of \(V_{\text{GS}} \) in the transfer characteristics in Figure 3. \(W \) and \(L \) are width and length of channel, respectively. \(C_i \) is the capacitance per unit area of the gate and \(V_T \) is the threshold voltage. Mobility is given to 0.17 cm2/Vs, 0.07 cm2/Vs and 0.06 cm2/Vs as the channel length varies from 50 to 120 μm. Clear difference in mobility is prominently acquired even at the same condition but channel length. Diverse channel lengths induce different lateral field applying to each device at the same drain voltage. This can be quantified as the following equation known as Poole-Frenkel conduction.25

\[
\mu(E) = \mu_0 \exp(\gamma \sqrt{E})
\]

Field dependent mobility shows the effect of variable \(E \)-field on the mobility where \(\mu_0 \) is the zero-field mobility and the field dependent factor \(\gamma \). In the devices where the contact resistances do not play a dominant role, the channel length dependence of the saturation mobility can be demonstrated in terms of the commonly observed PF effect in organic semiconductors.26
 types of the TIPS pentacene TFTs and inset shows log-linear plot to
Saturation mobilities at
Figure 3. The transfer characteristics of three types of the TIPS pentacene TFTs.
For our analysis, we assumed that E is given by V_{DS}/L. Figure 4 exhibits a plot of saturation mobilities versus
Figure 4. Saturation mobilities at $V_{GS} = -40$ V versus $E^{1/2}$ for the three
the field dependent factor γ. At room temperature, γ deduced to 0.0016 cm²/Vs which is reasonably at the
general range of organic semiconductors.
The origin of the PF effect can be explained that
the presence of disorder at the grain boundaries may be
responsible for the lateral field dependence in the mobility.
The strength of lateral field in the channel region should be
high enough in order to provoke the PF effect in the trans-
port. The electric field in the saturation regime is much
higher than in the linear regime, thus, we measure saturation
mobilities to find in more apparent regime.

Enhanced charge injection may facilitate the transport
and higher mobility is induced at a higher lateral field.27
Thus, the performance becomes contact limited for shorter
channel length whilst suppressing the PF conduction in
devices with higher contact resistance compared to chan-
nel resistance. However, we have used the high work
function metal Au to guarantee low contact resistance to
solution processed small molecular TFTs based on TIPS
pentacene. Thus, PF conduction, which is originated from
field-assisted hopping in trap states where are in energetic
disorder or in defects of semiconductor, assists favorable
charge transport through channel area.

4. CONCLUSION
Lateral field dependent mobility is found in solution pro-
cessed small molecular TFTs. PF conduction mechanism
is clearly suggested to explain the phenomenon. By taking
advantage of the PF effect on the mobility in saturation,
we acquired the mobility of up to 0.17 cm²/Vs in solution
processed small molecular TFTs with TIPS pentacene.

Acknowledgment: This work was supported by Basic
Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Education (2013R1A1A4A01009807).

References and Notes
1. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson,
M. G. Kaniz, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening,
286, 945 (1999).
4. L. Zhou, A. Wang, S. C. Wu, J. Sun, S. Park, and T. N. Jackson,
(2008).
6. S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, W. K. Kim, and M. G.
12, 4388 (2012).
53, 621 (2009).
10. X. H. Zhang, B. Dornescu, X. Wang, S. Yoo, T. Kondo, Z. L. Wang,
Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and
R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, and
Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor

Kim et al.

Received: 17 June 2014. Accepted: 25 December 2014.